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Abstract
The BRST cohomologies of non-critical massive RNS theories are analysed in
detail in the range of dimensions 1 < d < 10. It is shown that the spaces of
physical states admit the relative BRST resolutions: the theorems on vanishing
of bigraded-Dolbeaut type cohomologies and relative BRST cohomologies
are proved. The no-ghost theorem for relative classes guarantees quantum
mechanical consistency of these string models. The explicit correspondence
between relative cohomology states and the physical states of ‘old covariant’
formalism is established: a light-cone gauge slice is shown to be a local section
of relative cohomologies. The problem of reconstruction of absolute BRST
cohomologies out of those of the relative complex is also explicitly solved.

PACS numbers: 1125, 0220, 0240

Introduction

This paper reports on a natural continuation of the research on non-critical bosonic strings
recently published in [1]. It is devoted to a detailed study of quantum BRST cohomologies of
non-critical fermionic string models of the Neveu–Schwarz and Ramond types. These models
are, as shown in [2], gauge equivalent on the quantum level to the non-critical spinning string
theories [3] with longitudinal degrees of freedom [4].

It is hopeless to expect that the string models considered in this paper have something
in common with dimensionally reduced critical string theories. From the purely theoretical
point of view, they seem to provide a relativistic invariant and tractable quantum description
of one-dimensional extended objects in subcritical dimensions. The main physical motivation
for string models in subcritical dimensions goes back to an old and attractive idea that low-
energy hadronic physics should be described by some effective theory of string type. The
construction of a consistent theory of string interactions would be a step towards verification
of this idea. Despite the remarkable structural similarities of free non-critical string models to
those in d = 10 or 26, the mechanism of joining–splitting [5] interactions cannot be extended
to subcritical dimensions, at least in its pure form. The fundamental interaction vertices are
simply not Lorentz covariant. The methods of conventional conformal field theory [6,7] seem
to have a restricted area of application too. One important reason is that the ground states of
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non-critical bosonic strings as well as non-critical fermionic strings are not Sl(2;R) invariant
and fall into modules of subsidiary continuous series of the representations of this group [8].
Although these representations have ‘stringy’ realizations in the spaces of functions on the
unit circle, the corresponding scalar products are highly non-local.

On the other hand, the mass and spin spectra of these non-critical string models look
promising from the point of view of their hadronic interpretation [9,10]: there are no massless
excited states, tachyonic ground states can be eliminated from the Neveu–Schwarz spectrum by
consistent projection of GSO type [11] and the resulting theory is by no means supersymmetric.
It is not clear, however, that the ground tachyons should be necessarily eliminated from the
spectrum of a consistent theory. It may quite well be that their presence generates a mechanism
which allows one to look at the quantum string states as the states of a confined system which
are only locally visible (for example, in local light-cone frame) as free particles. It is then
natural to bring the scalar nature of the ground tachyons into question too. It may well be that
globalization of the light-cone description of non-critical strings demands putting the ground

state into a non-trivial representation of the little group of its momentum (SO(1, 2)
loc∼ Sl(2,R)

in d = 4).
In order to pursue these questions, with the problem of consistent interaction theory being

a prominent one, a better understanding of the quantum geometry of non-critical strings is
necessary. The research presented in this paper is a small step towards this ultimate goal.

Although the theory of critical string interactions was originally formulated within the
framework of ‘old covariant’ formalism or in terms of Mandelstam light-cone diagrams, it
achieved its final form within the framework of the BRST formulation [12]. Soon after the
invention of this formalism, the critical bosonic stings [13] and critical RNS models [14–17]
were shown to admit a consistent BRST description. The first attempt to apply BRST methods
to non-critical strings was presented in [18]: it was shown that there exists a quantum complex
corresponding to the canonical formulation [19] of Polyakov theory, provided that the Liouville
coupling constant and intercept parameter take their critical values. It is not difficult to
foresee an analogous result in the case of non-critical fermionic strings. The content of the
corresponding cohomology space is less obvious.

The cohomologies of BRST complexes corresponding to non-critical RNS models are
investigated in this paper. These models can be obtained by canonical quantization of the
systems defined by covariant spinning string action [3], supplemented by supersymmetric
Liouville action [20]. As their bosonic counterpart [22], the non-critical RNS strings are
described in the flat superconformal gauge [21] as canonical classical systems with constraints
of mixed type [2].

The standard BRST complexes used in this paper are, from the mathematical point of view,
nothing other than equivariant-type [23] complexes of super-Virasoro algebras with values in
the space of first quantized non-critical RNS models. (It should be stressed, however, that the
constraints of mixed type are treated here as if they were of first class.)

The paper is organized as follows. The first quantized non-critical RNS models are defined
in section 1, followed by the corresponding BRST complexes. Special attention is devoted to
a detailed description of the relative complex and bigraded complexes of Dolbeaut type [24].
These last serve as very effective tools in identification of relative cohomology classes, but
may also be important for formulation of gauge string theory [25]. The vanishing theorems for
bigraded and relative cohomologies are formulated and proved in section 2: the approach is
based on a remarkably simplified version of the technology of spectral sequences [28,29] and
provides a transparent relation [26,27] between the kinematical situation and the vanishing of
cohomologies. The absolute cohomology spaces are explicitly reconstructed out of relative
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classes. A proof of the no-ghost theorem based on the ideas of [16, 30] is given in section 3.
There is also some space devoted to the problem of identification of relative cohomology
classes as physical states of the ‘old covariant’ formalism. Finally, the GSO projected relative
complexes are defined and the content of their cohomologies is briefly discussed.

1. Massive fermionic strings and BRST complexes

First-quantized massive (non-critical) fermionic string models are described in pseudo-unitary
spaces Fε using the algebra generated by the elementary d-dimensional string modes:

[aµm, a
ν
n] = mηµνδm+n m, n ∈ Z

{dµr , dνs } = δr+sη
µν r, s ∈ Z +

ε

2
ε = 0, 1 0 � µ ν � d − 1

[aµ0 , q
ν
0 ] = −iηµν

(1)

and an additional family of operators

[um, un] = mδm+n {tr , ts} = δr+s m, n ∈ Z r, s ∈ Z +
ε

2
(2)

to describe the bosonic and fermionic Liouville excitations. The parameter ε is introduced
to distinguish between Ramond (ε = 0) and Neveu–Schwarz (ε = 1) boundary conditions.
The dimensionless bosonic zero modes aµ0 , q

ν
0 are related with centre-of-mass coordinate√

αxν = qν0 and its canonically conjugated momentum Pµ = √αaµ0 . The Liouville zero
mode is set to take an arbitrary but fixed real value u0 ≡ �. (The consistency conditions of the
classical variational problem demands [2, 22] � = 0.)

The representation space for (1) and (2) is constructed as the direct integral of the pseudo-
unitary spaces Fε(p)

Fε =
∫

Rd

ddpFε(p) (3)

over d-dimensional spectrum of momentum operators Pµ. Every Fε(p) is constructed to
carry the representation of the subalgebra generated by all elementary string and Liouville
operators (1), (2) except of bosonic zero modes. The constructions of F1(p) and F0(p) are
slightly different due to the presence of Clifford generators in the Ramond sector.

In the case of Neveu–Schwarz boundary conditions the space F1(p) is the Fock module
built up over the unique vacuum vector ω(p), which is assumed to be the eigenstate of
momentum operators Pµ ω(p) = pµ ω(p), and satisfies

aµmω(p) = dµr ω(p) = umω(p) = trω(p) = 0 m, r > 0. (4)

The scalar product in F1(p) is fixed by supplementing (1), (2) and (4) by formal
conjugation rules

(aµm)
∗ = a

µ
−m (dµr )

∗ = d
µ
−r (um)

∗ = u−m (tr )
∗ = t−r (5)

and by imposing the normalization condition on the vacuum vectors (ω(p), ω(p′)) =
δ(p′ − p).

It is convenient to introduce here the NS fermion parity operator

(−1)F1 := exp iπ
∑
r>0

(d−r · dr + t−r tr ). (6)

It will be necessary for further constructions of graded tensor products.
The structure of the Ramond excitation space H0(p) is a little more complicated due to

the presence of fermionic zero modes dµ0 , t0, which generate the real Clifford algebra C(d, 1)
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of (d + 1)-dimensional space with Lorenzian metric. If, in addition, one requires a well
defined fermion parity operator (an analogue of that of (6)—anticommuting with all fermionic
modes) the extension of the zero-mode sector by an additional generator  f is inevitable. The
space F0(p) must carry the representation of the real Clifford algebra C(d + 1, 1) and can be
constructed as the graded tensor product

F0(p) = F̃(p)⊗Z2 S(d + 1, 1) (7)

of the Clifford algebra module S(d + 1, 1) with the auxiliary Fock space F̃(p). (It is assumed
that S(d +1, 1) is an irreducible module for complexified algebra. The grading in S(d +1, 1) is
understood as the decomposition into the sum of±1 eigensubspaces of  f . More information
on Clifford modules may be found in the appendix A.) The space F̃(p) is generated out of the
unique vacuum vector ω̃(p) by the set of non-zero modes ãµm, ũm, d̃

µ
r , t̃r with m, r ∈ Z \ {0}.

It is assumed that they satisfy the same (anti)commutation relations as those of (1), (2) and
annihilate the vacuum ω̃(p) according to the rule introduced in (4).

The generators of the Ramond algebra are realized on F0(p) by the following set of
operators:

aµm = ãµm ⊗ 1 um = ũm ⊗ 1 dµr = d̃µr ⊗  f tr = t̃r ⊗  f m, r �= 0

d
µ

0 = 1⊗ 1√
2
 µ t0 = 1⊗ 1√

2
 l.

(8)

The matrices { µ,  l,  f } represent the canonical generators of Clifford algebra as
endomorphisms of S(d + 1, 1).

The fermion parity operator in F0(p) with all the desired properties is then defined by

(−1)F0 := exp iπF̃ ⊗  f F̃ =
∑
r>0

d̃−r · d̃r +
∑
r>0

t̃−r t̃r . (9)

In order to introduce the scalar product in the Ramond sector one imposes on the tilded
factors of the operators of (8) the same conjugation rules as those of NS space (5). The
scalar product of the Ramond vacuum vectors u(p) = ω̃(p) ⊗ u; u ∈ S(d + 1, 1) is defined
by (u(p), u′(p′)) := δ(p′ − p)〈u, u′〉, where 〈 , 〉 denotes a Hermitian pairing (A.3) on the
Clifford module such that all  -matrices are 〈 , 〉-skew symmetric. This gives the following
conjugation properties of Ramond modes (8):

(aµm)
∗ = a

µ
−m (dµr )

∗ = −dµ−r (um)
∗ = u−m (tr )

∗ = −t−r (10)

with respect to the resulting scalar product on F0(p).
The constraint operators on Fε are given by the standard normally ordered expressions:

Lm = 1
2

∑
n∈Z

: a−n · an+m : + 1
2

∑
r∈Z+ ε

2

r : d−r · dr+m :

+ 1
2

∑
n∈Z

: u−nun+m : +2i
√
βmum + (2β − aε)δm0 + 1

2

∑
r∈Z+ ε

2

r : t−r tr+m :

Gr =
∑
n∈Z

a−n · dn+r +
∑
n∈Z

u−ntn+r + 4i
√
βrtr .

(11)

The real Liouville coupling constant β and a real number aε, defining the beginning of
the mass spectrum of the physical states, are at the moment left as the free parameters of the
quantum model. They will be fixed at their critical values by the requirement of the existence
of BRST complex corresponding to the system (11) of constraints.

The structural relations of (11) reads

[Lm,Ln] = (m− n)Lm+n + 1
8c(m

3 − εm)δm+n + 2maεδm+n

[Lm,Gr ] =
(m

2
− r

)
Gm+r

{Gr,Gs} = 2Lr+s + 1
2c(r

2 − ε 1
4 )δr+s + 2aεδr+s

(12)
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with the value of central charge being given by c = d + 1 + 32β.
It is worth recalling that L0 as well as the level operator R = ∑

n>0(a−n · an +
u−nun) +

∑
r>0 r(d−r · dr + t−r tr ) are diagonalizable. The set of eigenvalues of R is given

by spec(R) = Nε = N(1− ε
2 ) ∪ {0}, where N denotes the set of positive integers.

Every space Fε(p) of (3) decomposes into a direct sum of finite-dimensional subspaces
of fixed non-negative level number. The dimensions of the corresponding eigensubspaces
are given in terms of standard bosonic (−) and fermionic (+) partition functions Pε∓(q) =∏

n>0(1∓ qn−
ε
2 )∓1:

Fε(p) =
⊕
N∈Nε

FN
ε (p) dim FN

ε (p) = q−N 2(1−ε)[
d+2

2 ]P−(q)d+1 Pε+(q)
d+1|0 (13)

where [·] is the integer part of a number and |0 denotes the constant term of the series. The
coefficient in front of the dimension formula (13) counts the degeneracy of the vacuum state
in the Ramond case and is equal to dim S(d + 1, 1).

The decomposition of Fε(p) into a direct sum of finite-dimensional subspaces of fixed
level allows one to be more precise about the structure of the space Fε. It is assumed that the
elements of this space have only a finite number of non-zero components in the fixed level
subspaces of this decomposition.

The subspace of physical states of ‘old covariant’ formulation Fphys
ε ⊂ Fε is defined as

the set of vectors ( satisfying

Fphys
ε =

{
(;Ln( = Gr( = 0; n � 0, r � ε

2

}
. (14)

The conditions above admit a slight generalization [2] leading one to a description of
continuous and discrete series of unitary string models with longitudinal degrees of freedom.
However, the generalized models do not admit the BRST resolution, and for this reason they
are not considered here.

In order to construct the BRST complex associated with the constraints (11), (12) one
introduces the corresponding ghost sector. The ghost sector is defined as the representation
space Cε of ghost (anti)commutation relations

{bn, cm} = δm+n [βr, γs] = δr+s m, n ∈ Z r, s ∈ Z +
ε

2
. (15)

The space C1 corresponding to the Neveu–Schwarz algebra is generated out of the unique
vacuum state ω satisfying

bnω = 0 cmω = 0 n � 0 m > 0

βrω = 0 γs ω = 0 r > 0 s > 0.
(16)

The ghost space C0 of the Ramond case stems from two independent vacuum vectors
ωλ; λ = 0, 1 (this ‘picture’ [7] for the representation of bosonic ghost commutation relations
is the only one [17] consistent with natural ghost conjugation rules and which guarantees the
spectrum of energy being bounded from below) defined to satisfy the following conditions:

bnωλ = 0 cmωλ = 0 n � 0 m > 0

βrωλ = 0 γs ωλ = 0 r � λ s � 1− λ. (17)

The non-degenerate scalar product in Cε is fixed by imposing the canonical conjugation
properties on the ghost modes

(cm)
∗ = c−m (bm)

∗ = b−m (γr)
∗ = γ−r (βr)

∗ = −β−r (18)

and assuming the normalization conditions (ω, c0 ω) = 1 for the Neveu–Schwarz vacuum and
(ωλ, c0 ωλ′) = 1− δλλ′ for Ramond ground states respectively.
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The spaces Cε are graded by the eigenvalues of ghost number operators:

ghε =
∑
n∈Z

: c−nbn : +
∑
r∈Z+ ε

2

: γ−rβr : + 1
2 (c0b0 − b0c0) + (1− ε) 1

2 (γ0β0 + β0γ0) (19)

such that gh1 ω = − 1
2 ω and gh0 ωλ = −λωλ. According to these conventions the ghost

numbers are integral or half-integral depending on the sector: spec (ghε) = Z + ε
2 .

The realization of superconformal algebra in Cε is given by the operators

Lm =
∑
n∈Z

(n−m) : c−nbn+m : +
∑
r∈Z+ ε

2

(r − 1
2m) : γ−rβr+m :

Gs = −2
∑
r∈Z+ ε

2

: γ−rbr+s : +
∑
n∈Z

(s − 1
2n) : c−nβn+s :

(20)

which are normally ordered with respect to (16) and (17) respectively. They satisfy the
structural relations of (12) with the value of central charge c = −10 and aε = ε

2 .
The differential in Cε is defined by

d = 1
2

∑
m�0

c−mLm + 1
2

∑
m>0

L−mcm + 1
2

∑
r�0

γ−rGr + 1
2

∑
r>0

G−rγr . (21)

It neither commutes with the operators (20) nor it is nilpotent:

d2 = −
∑
n>0

(
10

8
(n3 − εn) + εn

)
c−ncn −

∑
r>0

(
10

2

(
r2 − ε

4

)
+ ε

)
γ−rγr . (22)

The total space C(Fε) of the string BRST complex is defined as Z2 graded tensor product:

C(Fε) =
∫

Rd

ddp C(Fε)(p) C(Fε)(p) := Fε(p)⊗Z2 Cε. (23)

In order to respect the graded structure on the level of the algebras of elementary string
and ghost modes, the fermionic ghost operators are replaced by cn �→ (−1)Fε ⊗ cn and
bn �→ (−1)Fε ⊗ bn. Their conjugation properties with respect to the canonical pairing on the
tensor product (23) are changed accordingly: due to the presence of the skew Hermitian matrix
 f (9) in the fermion parity operator of the Ramond sector one has (cn)∗ = (−1)1−εc−n and
(bn)

∗ = (−1)1−εb−n.
Every space C(Fε)(p) (as well as C(Fε)) inherits the ghost number (19) gradation

C(Fε)(p) =
⊕
κ∈Z+ ε

2

Cκ(Fε)(p). (24)

The BRST operator is a differential in C(Fε) of ghost degree +1 and is defined according to a
general prescription of [23]:

D : Cκ(Fε)(p)→ Cκ+1(Fε)(p) D =
∑
n∈Z

Lnc−n +
∑
r∈Z+ ε

2

Grγr + d (25)

where Ln,Gr are string constraint operators (11) and d is that of (21). The conjugation
properties of D depend on the sector: D∗ = (−1)1−εD.

From (12) and (22) it follows that the operatorD is nilpotent provided the free parameters
β and aε of the string model take their critical values:

β = 9− d
32

aε = ε

2
. (26)

The absolute cohomology spaces of the BRST complex are defined in the standard way:

Hκ(Fε)(p) = Zκ(Fε)(p)

Bκ(Fε)(p)

Zκ(Fε)(p) = kerD|Cκ (Fε)(p) Bκ(Fε)(p) = ImD|Cκ−1(Fε)(p).

(27)
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The common convention of denoting the spaces of co-cycles of any complex under
consideration by the root letter Z and the spaces of coboundaries by the root letter B is
used throughout this paper.

The cohomology spaces (27) are determined by the cohomologies of several subcomplexes
of (23). The most important one is the so-called relative complex—its cohomology classes
admit direct quantum mechanical interpretation, provided the no-ghost theorem can be proved.
It will be demonstrated that they represent the physical states of a massive string.

It is necessary to recall some details of its structure. The construction of the relative
complex is much more straightforward in Neveu–Schwarz than in the Ramond sector.
Nevertheless, some introductory steps are common to both cases.

The kinetic operatorLtot
0 = L0 +L0 = {b0,D} commutes withD and can be diagonalized

in C(Fε). It is easy to see that any closed element outside kerLtot
0 is exact. Therefore, the

cohomology classes are determined by the co-chains of an on-mass-shell subcomplex:

C(0)(Fε) =
⊕
N∈Nε

∫
SN

dµN(p)CN(Fε)(p). (28)

The elements of CN(Fε)(p) are supported on the mass shells SN :

p2 = −m2
N m2

N = 2α

(
N +

1

2
�2 − ε d − 1

16

)
N = N str +Ngh (29)

whereN str andNgh denote the eigenvalues of string and ghost level operator respectively. The
direct integrals in (28) are taken with respect to the Lorentz-invariant measures on SN . It is
worth noting that all excited states (N > 0) from C(0)(Fε) are generically massive. The only
exception is � = 0 and d = 9 in the NS sector, where the first excited level is massless.

The on-mass-shell complex is further reduced to the relative complex by eliminating the
ghost zero modes (they do not contribute to the mass spectrum).

The space of a relative complex and the structure of the relative differential in the case of
the NS sector are analogous to that of bosonic string theory [1]:

Crel(F1)(p) := C(0)(F1)(p) ∩ ker b0 Drel = D − Ltot
0 c0 −M b0 M = {D, c0}.

(30)

Since Crel(F1)(p) does not contain the ghost zero modes it is convenient to shift the ghost
number of the vacuum by + 1

2 to obtain the relative grading by integers.
In the case of the Ramond complex one introduces a sequence of the following subspaces

of C(0)(Fε)(p):

K(F0)(p) := C(0)(F0)(p) ∩ ker b0 ⊃ K(0)(F0)(p) := K(F0)(p) ∩ ker β0

Crel(F0)(p) := K(0)(F0)(p) ∩ kerGtot
0 Gtot

0 = [β0,D].
(31)

The relative differential is given by

Drel = D − Ltot
0 c0 − F γ0 − (M − γ 2

0 ) b0 −N β0 (32)

where F = Gtot
0 + 2b0γ0 is the restriction of Dirac–Ramond operator to the space K(0)(F0)(p)

while M = {D, c0} + γ 2
0 and N = [D, γ0]. All of these operators are free of the ghost zero

modes.
An analogue of (30) in the Ramond sector—the space K(F0)(p)—equipped with the

differentialD0 = D−c0 L
tot
0 −(M−γ 2

0 )b0 is also a subcomplex of C(0)(F0)(p). It is important
to note, however, that in contrast to Crel(F1)(p) this space is still infinite dimensional. The
infinite degeneracy is generated by arbitrary polynomials in bosonic ghost zero modes γ0 and
β0, acting on the states which stem from ω0(p) and ω1(p) respectively. Fixing the level is
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not enough to obtain a finite-dimensional complex in the Ramond case. The property that
makes the classical statement on Poincaré duality working in the case of K(F0)(p) is finite
dimensionality at fixed level and at fixed ghost number.

This infinite degeneracy is removed in K(0)(F0)(p). This space contains the states excited
from ω0(p) (the spinor factor is suppressed) by string and ghost modes with positive weights.

The elements of relative complex Crel(F1)(p) of NS strings admit a simple description.
They are generated by the polynomials of level N (with N given in terms of p by the mass
shell condition (29)) in the original string excitation operators (1), (2) and ghost modes (15)
out of the vacuum state ω(p).

Note that the scalar product of the total BRST complex is zero when restricted to the
relative subspace. For this reason a non-degenerate scalar product on this complex is defined
by

((,( ′)rel = ((, (−1)F1c0 (
′) (,( ′ ∈ Crel(F1)(p) (33)

and one has D∗rel = Drel.
The space of relative complex in fact admits a richer, bigraded structure and decomposes

into a direct sum of bihomogeneous components:

Crel(F1)(p) =
⊕
κ

Cκrel(F1)(p) Cκrel(F1)(p) =
⊕
a−b=κ

Cab (F1)(p) (34)

where κ is the relative ghost number and a, b denote the ghost (c, γ ) and respectively anti-ghost
(b, β) degree. The relative differential splits accordingly in the spirit of complex geometry [24]:

Drel = D + D D2 = 0 D2 = 0 D D + D D = 0
D : Cab (F1)(p)→ Ca+1

b (F1)(p) D : Cab (F1)(p)→ Cab−1(F1)(p).
(35)

The structures of D and D are related to the decomposition of superconformal algebra (12)
into subspaces of negative and positive roots: S = S− ⊕ CL0 ⊕ S+. The expression for D in
terms of elementary modes can be obtained from (11), (20) and (21), (25):

D =
∑
m>0

(Lm + lm)c−m +
∑
r>0

(Gr + gr) γ−r + ∂. (36)

The operator ∂ is the canonical differential of S− subalgebra:

∂ = 1

2

∑
m>0

c−m

( ∑
k>0

(k −m)c−k bm+k +
∑
r>0

(
r − m

2

)
γ−s βm+s

)

+
1

2

∑
s>0

γ−s

( ∑
k>0

(
s − k

2

)
c−k βk+s − 2

∑
r>0

γ−r br+s

)
. (37)

The operators Lm,Gr are the negative level string constraints (11) while their partners
in (36):

lm = −
∑
k>m

(m− k)c−k bm−k −
∑
s>m

(
s +

m

2

)
γ−s βm−s

gr =
∑
k>r

(
r +

k

2

)
ck βs−k − 2

∑
s>r

γ−s br−s
(38)

implement the coadjoint and adjoint actions of S− on the ghosts and respectively anti-ghosts
of S+. The differentials are mutually adjoint with respect to the relative scalar product (33):
D∗ = D.

An analogous construction in the Ramond sector is a little more complicated, as the space
of the relative complex does not admit a direct description in terms of the original string and
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ghost modes. It is convenient, in this case, to introduce an explicit light-cone parametrization
of the mass shells and to regard the condition Ltot

0 = 0 as an evolution equation.
Choose an arbitrary light-cone frame {e±, ei}d−2

i=1 . (This consists of two light-like vectors
e±; e2

± = 0, e+ · e− = −1 and the Euclidean basis {ei}d−2
1 of (d − 2)-dimensional transverse

subspace e± · ei = 0.) Any mass shell (29) can be (at least locally in the massless and
tachyonic case) parametrized by the non-vanishing light-cone component p+ = e+ ·p �= 0 and
the transverse part p of the momentum. Choose x+ = e+ · x as an evolution parameter and put
P− = i∂/∂x+.

The space K(0)(F0)(p) is thus generated out of evolving spinor vacuum states by time-
dependent elementary modes with the evolution determined by their weights:

u(p+, p, x+) = eix+ 1
2p+ (p

2+α�2)
u(p+, p) Om(x

+) = eimx+ α

p+ Om (39)

where O denotes any of (1), (2) or (15).
The operator Gtot

0 is nilpotent on K(0)(F0)(p) and has trivial cohomology—there exists a
‘contracting homotopy’ 8 such that {Gtot

0 ,8} = 1. The ‘contracting homotopy’ can be most
conveniently chosen by 8 = √α d+

0 /p
+, where d+

0 denotes the light-cone component of the
fermionic zero mode. Consequently,

Crel(F0)(p) = Gtot
0 K(0)(F0)(p) K(0)(F0)(p) = Crel(F0)(p) ⊕ 8 Crel(F0)(p). (40)

Following [15] one introduces the shifted modes:

Ôm := [Gtot
0 ,8Om]± = Om −8[Gtot

0 ,Om]∓. (41)

The operation Om �→ Ôm induces an automorphism [27] of the associative operator algebra
generated by all non-zero elementary modes: ÔO′ = ÔÔ′. In particular, the map (41)
preserves the canonical commutation relations.

The time-dependent partners Ôm(x
+) of (41) commute withGtot

0 and generate the relative
states when acting upon the vacuum vectors satisfying the Dirac equation. Let V (p) denote
the space (see (A.4)) of Dirac vacuum states Gtot

0 V (p) = 0. It is not difficult to check that

Crel(F0)(p) = {(;( = W(Ô(x+))v(p), v(p) ∈ V (p)} (42)

whereW(·) is any polynomial in time-dependent, shifted creation operators. The right-pointed
inclusion is obvious. From the structure of V (p) (which is explicitly given in (A.4)) and the
form of Ô(x+) it clearly follows that dimW(Ô)V (p) = 1

2 dim K(0)(F0)(p). This, together
with (40), implies (42).

All subspaces defined in (31) may be equipped with non-degenerate scalar products. The
subcomplex K(F0)(p) carries the pairing which is strictly analogous to that of (33):

((,( ′)K = ((, (−1)F0 c0 () (,( ′ ∈ K(F0)(p). (43)

Since K(0)(F0)(p) stems from ω0 ghost vacuum, the form (43) is identically zero when
restricted to this subspace.

In order to heal the scalar product one introduces an injective vacuum substitution operator
χ : K(0)(F0)(p)→ K(F0)(p), which exchanges the ghost vacuum factor (·) ⊗ω0 of any state
into (·) ⊗ ω1. The non-degenerate pairing on K(0)(F0)(p) is then defined by

((,( ′)K(0) = (χ((),( ′)K (,( ′ ∈ K(0)(F0)(p). (44)

The property (Gtot
0 |K(0) )∗ = −Gtot

0 |K(0) with respect to (44) and the relation (Gtot
0 )

2 = Ltot
0

together with (40) imply that, again, the pairing (, )K(0) is zero when restricted to Crel(F0)(p).
The non-degenerate, Hermitian scalar product on the Ramond relative complex is thus defined
by the formulae

((,( ′)rel = i((,8( ′)K(0) = i(χ((), (−1)F0c08(
′) (,( ′ ∈ Crel(F0)(p). (45)
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The above pairing has always a definite sign on the space V (p) of Dirac vacuum vectors.
The conventions used in appendix A fix it to be strictly positive. It is also important to note
that the conjugation rules of the shifted modes with respect to (45) are changed and one has
Ô∗m = Ô−m independently of whether Ô is of fermionic or bosonic type. These properties are
crucial for the no-ghost theorem and, consequently, also for quantum mechanical interpretation
of the relative cohomology states.

From the automorphism property of O �→ Ô, it follows that any operator which commutes
withGtot

0 can be rewritten in terms of shifted modes just by replacing the original ones by those
of (41) in its expression. This applies in particular to the relative differentialDrel of the Ramond
complex (32).

Introducing the bigrading of the type of (34) on the space Crel(F0)(p), one may split the
relative differential (35): Drel = D + D with the expression for D given by (36) and the
formulae (37), (38) with all modes replaced by the shifted ones and obvious changes in the
mode labels. Despite the fact that {Drel,8} �= 0 one has (Drel)

∗ = Drel and (D)∗ = D. This
property easily follows [17] from (40) and from the fact that ((,( ′)rel ≡ ((, (Gtot

0 )
−1( ′)K(0)

with (Gtot
0 )
−1( ′ being any Gtot

0 -primary of ( ′.
Note, finally, that the local light-cone parametrization of the on-mass-shell complex by

evolving modes (39) could be used in the case of the NS sector as well.

2. BRST cohomologies

This section is devoted to the calculation of the cohomology spaces introduced in the previous
section. The vanishing of bigraded cohomologies will be shown first. Then the relative spaces
will be identified and finally the absolute cohomology will be reconstructed.

2.1. Relative cohomology

As stated in the previous section, one may introduce the bigraded cohomology spaces in both
sectors:

Ha

b(Fε)(p) = Za

b(Fε)(p)

Ba

b(Fε)(p)
Ha
b(Fε)(p) = Za

b (Fε)(p)

Ba
b (Fε)(p)

(46)

where H and H denote the cohomologies of D and D respectively.
The important and general property of the spaces (46) is that they are two-by-two

isomorphic. More precisely, we have the following lemma.

Lemma 2.1 (Poincaré–Serre duality).

(Ha

b(Fε)(p))
∗ = Hb

a(Fε)(p) (47)

with the duality (·)∗ in the sense of relative pairing (33) or (45).

Proof. A proof of the lemma follows from the fact that the scalar products on the relative
complexes are non-degenerate and that (D)∗ = D. This last property guarantees that ( , )rel

induces a well defined (class representative independent) pairing of cohomology spaces. The
finite dimensionality of Cab (Fε)(p) at fixed on-mass-shell momentum allows one to reduce the
proof to simple algebraic statements. Some details of the reasoning were presented in [1]. �

In order to prove the vanishing theorems for (46) it is convenient and effective to use the
technology of spectral sequences [23, 28] in a suitably simplified form [26]. Introduce a new
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gradation in the spaces of the complexes by assigning the filtration degrees to the elementary
modes:
deg(a+

m) = deg(d+
r ) = deg(cm) = deg(γr) = 1

deg(a−m) = deg(d−r ) = deg(bm) = deg(βr) = −1
deg(aim) = deg(d i

r ) = deg(um) = deg(tr ) = 0 m, r �= 0 i = 1, . . . , d − 2

(48)

where (·)± denote the light-cone components of the vector modes. The same definition applies
to the relative modes (41) of the Ramond sector. Note, however, that d̂+

0 = 0.
For simplicity, the common notation for the Neveu–Schwarz and Ramond relative modes

will be assumed throughout this section.
The spaces Cb(Fε)(p) decompose into filtration degree homogeneous components

Cb(Fε)(p) = ⊕f Cb;f (Fε)(p). Note that, for a momentum on the mass-shell SN (29), the
filtration degree is bounded by −N � f � N . The differential D splits accordingly:

D = D(0) + D(1) + D(2)

D(0) = − 1√
α
p+

( ∑
m>0

a−mc−m +
∑
r>0

d−r γ−r

)
D(i) : Cab;f (Fε)(p)→ Ca+1

b;f +i (Fε)(p).

(49)

The operators D(1) and D(2) of higher filtration degrees can be easily read off from (11) and (36)
but their explicit form is not used here. (They are not needed because of the vanishing theorem
for filtered complex below.) Out of (49) only the nilpotent component D(0) will be important.

One introduces the cohomology spaces Ha

b;f (Fε)(p) of D(0) localized at fixed filtration
degree. It is not difficult to show that these cohomologies are trivial.

The operator R0 =
∑

m>0(m c−mbm − a+
−ma

−
m) +

∑
r>0 r(γ−rβr − d+

−rd
−
r ), of filtration

degree zero, counts the level of a+, d+ excitations and c, γ ghost excitations. From the identity
{D(0),J } = p+√

α
R0, where J =∑

m>0 a
+
−mbm −

∑
r>0 r d

+
−rβr one easily concludes that all

co-chains outside the kernel of R0, in particular those with a > 0, are cohomologically trivial.
Hence

Ha

b;f (Fε)(p) = 0 a > 0 p �= 0. (50)

The simple statement above makes it possible, as in the case of bosonic string theory [1],
to prove an analogue of the Dolbeaut–Grotendieck lemma of classical complex geometry [24]
on the vanishing of bigraded cohomologies (46).

Lemma 2.2 (Dolbeaut–Grotendieck).

Ha

b(Fε)(p) = 0 = Hb
a(Fε)(p) a > 0 p �= 0. (51)

Proof. The result for the cohomologies of D is obvious in the light of general theorems on
cohomologies of filtered complexes [23, 28]. An elementary argument, based on the general
ideas of reasoning [31] was presented in the context of bosonic theory in [1,26] and is repeated
here for the sake of completeness. Any cohomology class [(a] ∈ Ha

b(Fε)(p) is represented
by a co-cycle (a = ∑

f�m (
a
∗; f with D(0)-closed lowest filtration degree component (a

∗;m.

Because of (50), there exists D(0)-primary ϕa−1
m of this element. The lowest filtration degree

component of an equivalent co-cycle( ′a = (a−Dϕa−1
m is of order at mostm−1. Using (50)

one may, step by step, prove that(a ∼ D>a−1 for some>a−1. Hence Ha

b(Fε)(p) = 0; a > 0.
The right-hand side equality follows from the Poincaré–Serre duality of lemma 2.1. �
The result above implies directly the vanishing theorem for relative cohomology classes

Hκ
rel(Fε)(p) = Zκ

rel(Fε)(p)

Bκ
rel(Fε)(p)

(52)

and gives a convenient description of the non-vanishing classes in terms of bigraded co-cycles.
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Theorem 2.1 (Vanishing theorem).

(1) Hκ
rel(Fε)(p) = 0 κ �= 0 p �= 0

(2) H 0
rel(p) ∼ Z0

0(Fε)(p)/DZ0
1(Fε)(p).

Proof.

(1) The reasoning here is, in fact, a copy of that of lemma 2.2. Any co-cycle(κ ∈ Zκ
rel(Fε)(p);

κ � 0 can be decomposed into bihomogeneous components (κ = ∑m
b=0 (

κ+b
b with

the highest one satisfying D(κ+m
m = 0. Because of (51) one has (κ+m

m = D>κ+m−1
m .

The equivalent co-cycle ( ′κ = (κ − Drel>
κ+m−1
m does not contain the term of bidegree

(κ+m,m). Continuing the elimination procedure by induction one concludes that(κ ∼ 0
unless κ = 0. The vanishing in the case of negative ghost number follows from the
Poincaré duality for relative cohomologies.

(2) A similar argument as above leads to the statement that Z0
rel(Fε)(p) � (0 ∼ (0

0 ∈
Z0

0(Fε)(p). Two co-cycles(0
0 and( ′00 are equivalent in the sense of relative cohomology

iff (0
0 −( ′00 = D>0

1 with D>0
1 = 0. �

It is worth noting that the second equality in the vanishing theorem allows one to establish
an introductory relation between the relative cohomology classes and the space of physical

states. The set Z0
0(Fε)(p) can be easily identified with the space (14) of the physical vectors

of ‘old covariant’ formalism. The state (0
0 (p) = ϕ(p) ⊗ ω; ϕ(p) ∈ Fε(p) (with ω

denoting the appropriate ghost vacuum) isDrel closed if and only if
∑

m>0 Lmϕ(p)⊗ c−mω +∑
r>0 Grϕ(p)⊗ γ−rω = 0. Hence

Z0
0(Fε)(p) = Fphys

ε (p)⊗ ω. (53)

The space DZ0
1(p) of ‘pure gauge’ elements in (53) will be later identified with the set of null

vectors in (14).
The vanishing theorem gives one the possibility to use a simple method [16, 30] to

determine the dimensions of the relative cohomology spaces. They can be computed with
the help of the Euler–Poincaré principle provided the complexes under consideration are of
finite dimension. This is the case for the relative complex Crel(Fε)(p) at fixed on-mass-
shell momentum and with its Euler–Poincaré characteristic chε(p) satisfying the sequence of
identities:

chε(p) :=
∑
κ

(−1)κ dim Cκrel(Fε)(p) =
∑
κ

(−1)κ dimHκ
rel(Fε)(p) = dimH 0

rel(Fε)(p). (54)

The second equality above is the expression for the Euler–Poincaré principle [23,31], while the
third one is implied by the vanishing of higher cohomologies. The dimensions of H 0

rel(Fε)(p)

can be thus described in terms of a generating series for the Euler–Poincaré characteristic of
the relative complex:

chε(q) = q
1

2α p
2+ 1

2 �
2−ε d−1

16 Eε(q) chε(p) = chε(q)|0 (55)

where |0 denotes the constant term. The series Eε(q) can be constructed as a product of the
generating series (13) for dimensions of Fε(p) and the generating function for the alternating
sums of ghost contributions appearing on the left-hand side of (54):

Egh
ε (q) = E2

+(q)E
2
ε−(q) E+(q) =

∏
n>0

(1− qn) Eε−(q) =
∏
n>0

(1 + qn−
ε
2 )−1. (56)

The functions above can be, in turn, easily obtained from the generating series Pε∓(q, t)
in two variables (t, q) corresponding to a family of elementary modes. The powers of
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t keep track of the ghost number of the states while the powers of q count the level:
Pε∓(q, t) =

∏
n>0(1 ∓ tghqn−

ε
2 )∓1, where gh = ±1, 0 is the ghost number of the family

of modes. The alternating sums of (54) are obtained by putting t = −1.
The final formula for dimension reads

dimH 0
rel(Fε)(p) = q

1
2α p

2+ 1
2 �

2−ε d−1
16 2(1−ε)([

d+2
2 ]−1)

∏
n>0

(1− qn)−d+1
∏
n>0

(1 + qn−
ε
2 )d−1|0. (57)

Note that the coefficient describing the multiplicity of Ramond ground states is two times
smaller than that of (13), which is a reflection of the fact that vacuum states of relative complex
do satisfy the Dirac equation. Formula (57) will be useful for the proof of the no-ghost theorem
in the next section.

2.2. Absolute cohomology

The reconstruction of the absolute cohomology spaces out of those of the relative complex
is much more complicated in the Ramond case. It will be performed here in two steps. The
Neveu–Schwarz case can then be obtained by following and simplifying the considerations for
Ramond theory.

In order to recover the absolute cohomologies of the Ramond sector it is convenient to
consider an intermediate complex and the corresponding cohomology spaces. The space of its
co-chains K(F0)(p) was already introduced (31) in the course of construction of the relative
complex:

K(F0)(p) = K0(F0)(p)⊕ K1(F0)(p) D0 = Drel + Fγ0 +Nβ0. (58)

The subspaces Kλ(F0)(p); λ = 0, 1 stem from respective ghost vacuum vectors of (17).
The differential in K(F0)(p) is simply the restriction of the absolute one to this subspace.
It is convenient to assume that the above complex is graded by the ghost number operator
ghK = ghrel + 1

2 (β0γ0 + γ0β0) = gh0 − 1
2 (c0b0 − b0c0) such that ghK ωλ = ( 1

2 − λ)ωλ.
Note also that K(0)(F0)(p) ⊂ K0(F0)(p). It is worth recalling that the spaces Kλ(F0)(p) are
infinite-dimensional, but Kκ

λ(F0)(p) of fixed ghost number are of finite dimension.
The following technical lemma [27] is of primary importance.

Lemma 2.3. Let (κ ∈ K0(F0)(p).
If D0(

κ ∈ K(0)(F0)(p) then (κ = D0f
κ−1 + f κrel for some f κ−1 ∈ K0(F0)(p) and

f κrel ∈ Crel(F0)(p).

Proof. Assume the expansion (κ = ∑m
n=1 γ

n
0 >

κ
n; ghK(>

κ
n) = k − n. The condition

D0(
κ ∈ K(0)(F0)(p) implies a chain of equations:

F>κ
m = 0

Drel>
κ
m +>κ

m−1 = 0

...

Drel>
κ
1 + F>κ

0 + 2N>κ
2 = 0

obtained by demanding the coefficients of all positive powers of γ0 in D0(
κ to vanish. The

first equation is solved by >κ
m = Ff κm for some (by no means unique) f κm ∈ K(0)(F0)(p).

Substituting this solution into the next equation one obtains >κ
m−1 = Drelf

κ
m + Ff κm−1 with

some f κm−1 ∈ K(0)(F0)(p). Using the crucial property of F being exact, one may continue by
induction to obtain

>κ
l = Drelf

κ
l+1 + (l + 1)Nf κl+2 + Ff κl 0 � l � m f κl = 0 l > m l < 0.
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It is then straightforward to check that

(κ = D0f
κ−1 + Ff κ0 where f κ−1 =

m−1∑
n=0

γ n0 f
κ
n+1. �

LetZκ
0 (F0)(p) denote the space ofD0 co-cycles from K0(F0)(p). From the lemma above

one may immediately conclude that any D0 co-cycle is equivalent to a relative one.

Corollary 2.1. Let (κ ∈ Zκ
0 (F0)(p).

Then (κ = D0f
κ−1 +(κ

rel, where (κ
rel ∈ Zκ

rel(F0)(p).

Proof. Use lemma and impose D0(
κ = 0. Then 0 = D0(f

κ
rel) = Drel(f

κ
rel). �

The next statement is a simple consequence of the one above. It will be shown that the
natural inclusion map:

Zκ
rel(F0)(p) � (κ → i+((

κ) := (κ ∈ Zκ+ 1
2

0 (F0)(p) (59)

induces an isomorphism of corresponding cohomology spaces.

Corollary 2.2. The map

H 0
rel(F0)(p) � [(]→ i∗+[(] = [i+(()]K ∈ H

1
2

0 (F0)(p)

injectively covers the cohomology of D0|K0(F0)(p).

Proof. It is clear that i+ Drel = D0 i+. Hence i+ transforms co-cycles into co-cycles.
From corollary 2.1 it follows that any D0 closed element is D0 equivalent to a relative co-
cycle. Since the relative differential is a restriction of D0 to the relative subcomplex one has

H
κ+ 1

2
0 (F0)(p) = 0; κ �= 0.

For κ = 0 it is enough to demonstrate that the map is injective. According to corollary 2.1
the co-cycle(

1
2 is always equivalent to the image of some relative one under i+. If it is exact in

the sense of D0 cohomology then, because i+ intertwines the differentials, the corresponding
relative co-cycle is trivial too. �

The full cohomology of K(F0)(p) can be recovered by use of the Poincaré duality principle
with respect to (, )K of (43). The spaces K0(F0)(p) and K1(F0)(p) are paired in a non-
degenerate way with respect to this form. The principle implies that the only non-trivial
cohomology space of K1(F0)(p) is H−1/2

1 (F)(p)—the Poincaré dual of H 1/2
0 (F)(p).

In order to obtain more explicit information on the content of this cohomology space one

may define a mapping from the space Z0
0(F0)(p) of theorem 2.1 into the space Z−1/2

1 (F0)(p)

of D0 closed co-chains, namely

Z0
0(F0)(p) � (0

0 → i−((0
0 ) := 8χ((0

0 ) + β0 Qχ(f 0
0 ) ∈ Z

− 1
2

1 (F0)(p). (60)

The operator 8 in the above formula denotes the contracting homotopy of F from (40)
andQ = {Drel,8}. The element f 0

0 is an arbitrarily chosen F -primary of(0
0 : Ff 0

0 = (0
0 and

χ denotes the vacuum substitution map. In order to check that (60) transforms co-cycles into
closed elements one should take into account that N χ((0

0 ) = 0 for any co-chain of bidegree
(0, 0) and that [Drel,Q] = [F,Q] = [N,Q] = 0. The last three equations follow immediately
from the definition of Q and graded Jacobi identities.

The analogous result to that of corollary 2.2 can be proved for the injection (60).
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Corollary 2.3. The map

H 0
rel(F0)(p) � [(0

0 ]→ i∗−[(0
0 ] = [i−((0

0 )]K ∈ H
− 1

2
1 (F0)(p)

injectively covers the cohomology of D0|K1(F0)(p).

Proof. Assume that(0
0 represents a non-trivial element of relative cohomology and i−((0

0 ) =
D0f

− 3
2 in K1(F0)(p). Then (by abusing the notation a little)

0 = (i−((0
0 ),H

1
2

0 (F0)(p))K = (8χ((0
0 ), (−1)F0 c0 i

∗
+(H

0
rel(F0)(p)).

But this implies (45) ((0
0 , H

0
rel(F0)(p))rel = 0 and yields a contradiction. �

The considerations above can be summarized by stating that full cohomology of D0 is given
by the direct sum

HK(F0)(p) = H
− 1

2
K (F0)(p)⊕H

1
2

K (F0)(p) (61)

where the spaces on the right-hand side are explicitly expressed (59), (60) as the isomorphic
images of relative cohomology group.

The reconstruction of absolute BRST cohomologies out of those of (61) follows, in fact,
an analogous line of reasoning as that which led from the relative space towards recovery of
HK(F0)(p).

As indicated in (31) the absolute on-mass-shell complex decomposes into a direct sum:

C(0)(F0)(p) = K(F0)(p)⊕ c0 K(F0)(p) (62)

and there are two natural injections of the space K(F0)(p) into the absolute complex. The first
one, denoted by j , is given by the canonical inclusion of this space as a first summand in (62).
The second map is defined as the multiplication of every element by the zero-mode c0. The
injection j intertwines the differentials Dj = jD0 and, in contrast to the multiplication map,
transforms theD0 co-cycles into absolute ones. The intertwining property of j guarantees that
the map j ∗ induced on cohomologies is well defined.

In order to define the counterpart of the multiplication map with similar properties one
should first note that if (κ is a D0 co-cycle, then there always exists some primary hκ+1 of
(M − γ 2

0 )(
κ . If κ �= ± 1

2 , then due to (61) (κ = D0f
κ−1 and hκ+1 = (M − γ 2

0 )f
κ−1.

Otherwise, the element (M − γ 2
0 )(

κ is of degree �= ± 1
2 and is closed under D0. Hence it is

trivial.
Using the above simple fact one may define a properly modified multiplication map

Zκ
K(F0)(p) � (κ → c((κ) := c0(

κ − j (h((κ)) ∈ Zκ+ 1
2 (F0)(p) (63)

by choosing the appropriate primaries h((κ) for all D0 co-cycles. This choice can always
be made in such a way that c((κ + D0f

κ−1) = c((κ) −D(c0f
κ−1). Then c induces a well

defined map c∗ of cohomology spaces.
First it will be demonstrated that the absolute cohomologies can be non-trivial only

at the absolute ghost number κ satisfying −1 � κ � 1. Assume that κ > 1 and let
(κ = j (>κ+1/2) + c0j (>

κ−1/2) be an absolute co-cycle. (An element of K has the ghost
number shifted by − 1

2 when looked upon as an absolute co-chain.) Then its components
satisfy D0>

κ−1/2 = 0 and D0>
κ+1/2 + (M − γ 2

0 )>
κ−1/2 = 0. Since D0 cohomology vanishes

for κ − 1
2 > 1

2 , one has >κ−1/2 = D0f
κ−3/2 for some f κ−3/2. The equivalent co-cycle

( ′κ = (κ + D(c0f
κ−3/2) does not contain the c0 (·) term and is the image of some D0 co-

cycle under j : ( ′κ = j (>′κ+1/2). Because of the intertwining property of j and (62), ( ′κ is
trivial. An analogous reasoning gives the conclusion for κ < −1.
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The reconstruction of absolute cohomologies at the end points κ = ±1 of the admissible
range is almost immediate. The closure of (−1 = j (>−1/2) + c0j (>

−3/2) implies, as above,
(−1 ∼ j (>′−1/2). Further identification of co-cycles is equivalent to that in D0 cohomology.
Hence H−1(F0)(p) = j ∗H−1/2

K (F0)(p). An analogous result, H 1(F0)(p) = c∗H 1/2
K (F0)(p)

for κ = 1, follows from Poincaré duality, but can also be easily obtained by direct reasoning.
For (1 to be closed it is necessary that D0>

1/2 = 0 and D0>
3/2 + (M − γ 2

0 )>
1/2 = 0. Note,

however, that the second term is exact and its primary h(>1/2) can be chosen according to the
convention applied in definition (63). The sum >3/2 + h(>1/2) is a co-cycle of degree 3

2 and
must be trivial. Let f 1/2 be its primary. Then (1 ∼ ( ′1 = (1 − Dj(f 1/2) = c(>1/2) and
one obtains the desired result.

The situation is a bit more complicated at κ = 0. The absolute co-cycle of ghost number
zero is of the form (0 = j (>1/2) + c0j (>

−1/2), and in particular, D0>
−1/2 = 0. The

element>−1/2 has two independent components>−1/2
λ ; λ = 0, 1 built up over different vacua.

From (62) it is clear that>−1/2
0 = D0f

−3/2
0 . An equivalent co-cycle( ′0 = (0−Dc0j (f

−3/2
0 )

is free of the component c0j (>
−1/2
0 ) and the remaining ones should satisfy D0>

1/2
0 = 0,

D0>
−1/2
1 = 0 and D0>

1/2
1 + (M − γ 2

0 )>
−1/2
1 = 0. A similar argument as that used in the

case of κ = 1 leads to the conclusion that >1/2
1 + h(>

−1/2
1 ) = D0f

−1/2 (63). Hence an
equivalent co-cycle( ′′0 = ( ′0−Dj(f −1/2) is of the form( ′′0 = j (>

1/2
0 )+ c(>−1/2

1 ) and the
remaining ‘gauge’ freedom is reduced to D0 cohomological equivalence in both components
independently. (The co-cycle >−1/2

1 must be in the kernel of M − γ 2
0 , which can always

be satisfied.) The absolute cohomology space at ghost number zero is thus a direct sum of
two spaces H 0(F0)(p) = H 0

0 (F0)(p)⊕H 0
1 (F0)(p) which stem from different ghost vacuum

vectors and are given as images of the appropriate spaces (62) under j ∗ and c∗ respectively.
The considerations can be summarized in the form of the following theorem, which exhibits

the explicit relation between the relative cohomology space and those of the absolute complex
at non-zero momentum p �= 0.

Theorem 2.2 (Absolute cohomology—Ramond sector). The mappings i∗± and j ∗, c∗ of the
following diagram:

H 0
1 (F0)(p)

H−1(F0)(p)

c∗

↖
j∗

↙
H
− 1

2
K (F0)(p)

i∗−←− H 0
rel(F0)(p)

i∗+−→ H
1
2

K (F0)(p)

j∗

↗
c∗

↘

H 0
0 (F0)(p)

H 1(F0)(p)

cover injectively the absolute cohomology space of the Ramond sector for p �= 0.

Since all the mappings of the above diagram are isomorphisms, it describes, in fact, the
replication of relative classes to form the space of the absolute cohomology.

An analogous result for the NS complex is much easier to obtain. It is enough to define
the inclusion map j and the multiplication map c (63) from the space of relative co-cycles into
the space of absolute complex. Then arguments similar to those preceding theorem 2.2 prove
the following theorem.

Theorem 2.3 (Absolute cohomology—Neveu–Schwarz sector). The mappings j ∗ and c∗ of
the following diagram:

H−
1
2 (F1)(p)

j∗←− H 0
rel(F1)(p)

c∗−→ H
1
2 (F1)(p)

cover injectively the absolute cohomology space of the Neveu–Schwarz sector for p �= 0.
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In order to complete the analysis of BRST cohomologies one should determine the non-
zero classes at p = 0. The mass-shell condition (29) restricts the necessary considerations
to the cases when m2

N = 2α(N + 1
2�

2 − ε d−1
16 ) = 0 and eliminates almost all states from the

game. Note, first, that for � �= 0, the cohomology is zero. The only possibilities are left at
levelN = 1

2 in d = 9 for the NS sector and at levelN = 0 in the Ramond case, independently
of d.

The complex C(0)(F1)(0) is of finite dimension and is spanned by the following subspaces:

C−
1
2

NS = V ⊕ C c0β− 1
2
ω(0) C

1
2

NS = c0V ⊕ C γ− 1
2
ω(0)

C−
3
2

NS = Cβ− 1
2
ω(0) C

3
2

NS = C c0γ− 1
2
ω(0) V = C{ dµ− 1

2
ω(0), t− 1

2
ω(0)}.

The complex C(0)(F0)(0) of the Ramond sector is infinite-dimensional and is given as a direct
sum of the following subspaces:

Sm0 = Cγ m0 S0 Sm1 = Cβm0 S1 and c0S
m
0 c0S

m
1 m � 0

where Sλ = S(d + 1, 1) ⊗ ωλ are the spinor modules with appropriate ghost vacuum roots.
Note that the differential restricted to this subcomplex reduces to D = −γ 2

0 b0.
By direct calculation one may show the following theorem.

Theorem 2.4 (Absolute cohomology p = 0).

H−
1
2 (F1)(0) $ V H

1
2 (F1)(0) $ c0V H±

3
2 (F1)(0) $ C±

3
2

NS d = 9.

H−2(F0)(0) $ S1
1 H−1(F0)(0) $ c0S

1
1 H 0(F0)(0) $ S0

0 ⊕ c0S
0
1

H 2(F0)(0) $ c0S
1
0 H 1(F0)(0) $ S1

0 1 < d < 10.

The structure of the cohomology space at p = 0 is in the NS case similar to that of critical
string theory [17] only in nine-dimensional spacetime. The cohomology of Ramond complex
is, independently of dimension, described by the direct sums of appropriate spinor modules,
as above.

3. The no-ghost theorem, cohomology representations and GSO projections

The scalar product (33) or (45) on the relative complex induces a pairing on the space of relative
cohomologies via their representatives:

〈[((p)]rel, [( ′(p)]rel〉 = (((p),( ′(p))rel ((p),( ′(p) ∈ Z0
rel(Fε)(p). (64)

It is well defined, i.e. does not depend on the choice of representing co-cycles, due to the
fact that D∗rel = Drel with respect to (, )rel independently of the sector. The Poincaré duality
guarantees that it is non-degenerate.

The positivity of (64) can by proved by comparing [30] the Euler–Poincaré characteristic
of the relative complex (54) with its signature. The signature of the space equipped with a
non-degenerate Hermitian form is defined as the trace of its matrix in an orthonormal basis.

Hence the positivity of the scalar product (64) is equivalent to the following theorem.

Theorem 3.1 (No-ghost).

signH 0
rel(Fε)(p) = dimH 0

rel(Fε)(p).

Proof. In order to prove the above equality it is most convenient to compare the generating
series for dimensions (57) with that for signatures. For the last one to be constructed one may
use the Euler–Poincaré principle for signatures (this principle may be proved with the help of
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positive Hodge–Serre product on the space of the complex [16]), which in the case of string
complex amounts to

signH 0
rel(Fε)(p) = sign C0

rel(Fε)(p) = sign Crel(Fε)(p).

The signature of the full complex can be calculated as the weighted trace of Hodge–Serre
Hermitian metric operator [16], but it seems that the construction of the generating function
for signatures of C0

rel(Fε)(p) is more convenient and transparent:

signε(q) = q
1

2α p
2+ 1

2 �
2−ε d−1

16 Sε(q) sign C0
rel(Fε)(p) = signε(q)|0. (65)

The signatures are multiplicative with respect to the tensor product and consequently the
generating functionSε(q) is given as the product of the series corresponding to the contributions
from appropriately normalized, separate families of modes. First of all, it factors into string
and respectively ghost generating series: Sε(q) = Sstr

ε (q) S
gh
ε (q).

The string part of the generating function is determined by the Lorenzian character of
the metric present in (1) and (2). The states excited by odd number of bosonic or fermionic
timelike oscillators have strictly negative ‘norm’ and the contribution of this timelike sector
to the signatures is described by the functions which count the differences between even and
odd partitions of the level number. Hence, the total contribution of the string sector is

Sstr
ε (q) = 2(1−ε)([

d+2
2 ]−1)(P−(q))d (Pε+(q))

d
∏
n>0

(1 + qn)−1
∏
n>0

(1− qn− ε
2 ).

The first term corresponds to the positive scalar product on the space of Dirac vacuum
states, while the two subsequent ones correspond to the spatial/Liouville bosons and fermions
respectively.

In order to determine the ghost factor of the generating function it is enough to notice that
only homogeneous doublet excitations of c−nb−n and γ−rβ−r give a non-zero contribution to
the signature. The fermionic pairs insert +1 if they appear in an even power and−1 when they
are excited by an odd number of times. The bosonic ghost pairs always contribute +1. Taking
into account their weights one gets

Sgh
ε (q) =

∏
n>0

(1− q2n)
∏
n>0

(1− q2(n− ε
2 ))−1.

Hence the generating function (65) for signatures is equal to that of (57) for dimensions. �

The space Z0
0(Fε)(p) was already identified with the set of physical states (14) of Fε(p).

The positivity of the scalar product (64) on the relative cohomologies allows for straightforward

identification of the space of exact co-cycles DZ0
0(Fε)(p). This in turn makes it possible to

establish a strict relation between the space of states constructed within the framework of ‘old
covariant’ formalism and the space of relative cohomologies.

Note, first, that the scalar product ( , )phys, which is usually constructed ( [2] and references

therein) on Fphys
ε (p) coincides with that induced from the relative complex. To be more precise:

for Fphys
ε (p) � ϕ → i(ϕ) = ϕ ⊗ ω ∈ Z0

0(Fε)(p) one has (ϕ, ϕ′)phys = (i(ϕ), i(ϕ′))rel.
This means that the identification (53) is isometric. The no-ghost theorem guarantees that

(0
0 ∈ DZ0

1(Fε)(p) if and only if ((0
0 , ·)rel = 0. Therefore, there are no ‘negative norm’ states

in Fphys
ε (p) and the space of cohomologically trivial elements in Z0

0(Fε)(p) coincides with the
isometric image of the radical (the set of null vectors) Nε(p) ⊂ Fphys

ε (p). The considerations
above can be summarized in the form of the following corollary.
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Corollary 3.1 (BRST correspondence).

Fphys
ε (p)

Nε(p)

i∗$ H 0
rel(Fε)(p) (66)

where i∗ denotes the canonical isometry induced on the quotient spaces.

The correspondence principle allows for construction of the representatives of the relative

cohomology classes. The space Fphys
ε (p) as well as Z0

0(Fε)(p) can be most conveniently
described in terms of DDF operators [32], which are designed to commute with all quantum
constraints (11). Their construction is tightly associated with the choice of the light-cone frame
{e±, ei} and their domain is restricted by the condition p+ �= 0 which makes the Fock-type
parametrization of the physical states local in the case when the vacuum states are tachyonic
or massless. For completeness, the construction of DDF operators is briefly sketched in
appendix B.

There are bosonic {Ai
m}m∈Z and fermionic {Di

r}r∈Z+ ε
2

families of the transverse modes
1 � i � d−2. There are two sets of modes corresponding to the physical Liouville excitations
{Um}m∈Z and their fermionic partners {Tr}r∈Z+ ε

2
respectively.

The operators above satisfy standard commutation relations:

[Ai
m,A

j
n] = mδn+mδ

ij [Um,Un] = mδn+m

{Di
m,D

i
n} = δn+mδ

ij {Tm, Tn } = δn+m.
(67)

There are in addition two families {A−m}m∈Z and {G−r }r∈Z+ ε
2

of longitudinal Brower
modes [4], which form a superconformal algebra:

[A−m,A
−
n ] = (m− n)A−m+n [A−m,G

−
r ] =

(m
2
− r

)
G−m+r {G−r , G−s } = 2A−r+s (68)

with the central charge equal to zero. The longitudinal operators (anti)commute with transverse
and Liouville modes of (67).

It was proved in [2] that

((p) ∈ Fphys
ε (p)⇔ ((p) = W(DDF)ω(p) (69)

where W(·) denotes any polynomial in DDF creation operators. The elements of Z0
0(Fε)(p)

are obtained by multiplying (69) with appropriate ghost vacuum vector. The DDF state is null,
i.e. cohomologically trivial in the BRST picture, if and only if it contains any longitudinal
excitation. Hence, the subspace

F lc
ε (p) = {((p);A−0 ((p) = 0} (70)

defines a good section of Z0
0(Fε)(p) over the quotient H 0

rel(Fε)(p). This section does not
contain the longitudinal excitations and is called the light-cone gauge slice.

It is tempting to define a global picture for the relative cohomology space by fusing the
local spaces of (70):

H 0
rel(Fε) $

∫
dp+

p+
dd−2pF lc

ε (p) (71)

as a direct integral with respect to the Lorentz-invariant measure. The space (71) is well
defined only in the case when the ground states are massive—the light-cone coordinates for
the momentum are global on the massive shells.

In order to introduce a consistent global picture in the case of tachyonic or light-like
ground states, which seem to be generic, one should introduce the appropriate coverings of
the shells by the systems of local light-cone coordinates. This in turn implies the necessity



1880 Z Hasiewicz

to introduce the transition functions between local Fock space pictures, which are defined by
local DDF algebras and local light-cone slices (70).

It would seem to be an attractive idea (especially in the context of hadronic interpretation)
to think about the non-critical quantum string as a (topologically) confined system, which is
only locally visible as the set of free particles of Fock type. That issue is far beyond the scope
of this paper, however.

The models under consideration admit a consistent, i.e. Poincaré invariant, truncation of
their spectra. (It is sometimes possible to use the argument of the locality of the conformal field
theory corresponding to RNS model [7]. Nothing like that can be applied here as there seems
to be no CFT in the conventional sense corresponding to the massive string models.) The
reduction procedure can be formulated on the level of the relative complex and, in particular,
can result in elimination of the tachyonic ground states from the NS spectrum. In that respect it
is analogous to the celebrated GSO projection [11] of the critical string. It should be stressed,
however, that the truncated spectrum of the massive strings is never supersymmetric.

The original idea of [11] was to project the theory onto the subspaces with definite fermion
parity with respect to (6) and (9). The parity projection operators P±Fε

= 1
2 (1± (−1)Fε ) of Fε

spaces can be in a natural way extended [14] onto the whole of relative complex by putting

P±ε rel = 1
2 (1± (−1)Fε+Fgh+ghε rel) (72)

where Fgh =
∑

n>0(b−ncn + c−nbn) and ghε rel denotes the relative ghost number. The last
operator is given by (19) with the zero modes suppressed. It is clear that DrelP

±
ε rel = P±ε relDrel

and C±rel(Fε)(p) = P±ε relCrel(Fε)(p) are the subcomplexes of the relative complex. Their
cohomologies can be easily read off those of the full relative complex. They are simply given
by GSO projections of (66). The content of the subspaces H 0±

rel (Fε)(p) = P±ε relH
0
rel(Fε)(p)

can be easily described in terms of the local DDF subalgebra of the light-cone gauge slice (70).
In the case of vanishing Liouville momentum � = 0 the content of GSO projected spaces can
be described as follows.

The spaceH 0−
rel (F1)(p) is generated from vacuum vector by the polynomials in transverse

and Liouville DDF operators of odd fermion number. It is thus tachyon-free and the spectrum
begins from a massive vector particle: m2

1/2 = α(1 − d−1
8 ). It is worth stressing that the

Liouville modes T−1/2 andU−1 supplement the transverse ones to form a vector representation
of a small group SO(d − 1) of massive momentum [10].

The complementary space H 0+
rel (F1)(p) contains a tachyon of depth m2

0 = −α d−1
8 . The

first admissible excited level is occupied by a massive vector and massive antisymmetric tensor
particle: m2

1 = α(2 − d−1
8 ). In the physical case of four-dimensional spacetime this tensor

corresponds to an axial vector and one has, in fact, two vector particles with different properties
with respect to spatial reflections. Both are of mass m2 = 13

8 α.
The subspaces H 0±

rel (F0)(p) of the Ramond sector are naturally isomorphic. The states
of H 0+

rel (F0)(p) are generated by even and odd DDF polynomials acting on  f -even and
respectively  f -odd vacuum spinors. In four dimensions the vacuum contains two massless
particles of opposite helicities h = ± 1

2 , while the first excited level is occupied by two spin- 3
2

particles of mass m2
1 = 2α. Their states are generated by elementary DDF modes out of

vacuum spinors of opposite  f -parity.
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Appendix A

This appendix is devoted to a brief presentation of the properties of Clifford modules and a
discussion of the light-cone solutions of the Dirac equation.

The complexified Clifford algebras C(d + 1, 1)C (the signature is in fact meaningless) are
irreducibly represented as the endomorphism algebras of complex vector spaces of dimension
2[ d+2

2 ]. For even d , the algebras are simple and the modules are faithful. In odd spacetime
dimensions the algebras split into direct sums of simple ideals and one of them is sent to zero
under irreducible representation.

The irreducible representation spaces for the real Clifford algebras C(d + 1, 1) form a
richer category and in the range of interesting dimensions are described in the following table:

d = 2 3 4 5 6 7 8 9

S(d + 1, 1) ∼ R
4

C
4

H
4

H
4

H
8

C
16

R
32

R
32

(A.1)

where R,C and H denote the fields of real numbers, complex numbers and the ring of
quaternions respectively. The modules (A.1) are not faithful for d = 5, 9. Although it is
tempting to exploit the full structure of real Clifford modules, this appendix is mainly restricted
to the complexified case. To construct the representations which are convenient in the context
of this paper one may proceed as follows.

Distinguish two Clifford generators 0,  1 to form the light-cone basis ± = 1√
2
( 0± 1).

The remaining basis elements  2, . . . ,  d−1,  l,  f generate the Euclidean Clifford algebra
C(d, 0). Let S(d, 0) be the the irreducible representation module for its complexification and
let { γ a; a = 2, . . . , d−1, l, f } be the set of endomorphisms representing the generators. Then
the generators of the full algebra C(d + 1, 1) are represented on S(d + 1, 1) ∼= S(d, 0)⊗R

2 as
follows:

 a ∼ γ a ⊗D
 1 ∼ 1 ⊗ A
 0 ∼ 1 ⊗ J

A =
(

0 1
1 0

)
J =

(
0 1
−1 0

)
D =

(
1 0
0 −1

)
. (A.2)

Let 〈, 〉E denote the positive Hermitian form on S(d, 0) such that (γ a)+ = γ a and put

〈u(1), u(2)〉 = i(〈u(1)1 , u
(2)
2 〉E − 〈u(1)2 , u

(2)
1 〉E) u(i) =

(
u
(i)
1

u
(i)
2

)
∈ S(d + 1, 1). (A.3)

Then 〈 , 〉 has all the properties desired for the constructions in the Ramond sector (10).
Using the representation (A.2) one may easily solve the Dirac equation in light-cone

coordinates. The complete set V (p) of solutions at fixed momentum is parametrized by
S(d, 0) and is described by

v(p) =
(

1√
2p+ (p +

√
α�γ l)u

u

)
u ∈ S(d, 0) p =

d∑
i=2

γ i pi. (A.4)

Note that the set V (p) is stable with respect to the action of  f as well as with respect to
the action of shifted transverse and Liouville zero modes d̂ i0, t̂0 of (41).

The scalar product (45) introduced on the Ramond relative complex can be expressed
on the ground states as the light-like component of the conserved current: (v(p), v(p))rel =
−〈v(p),  +v(p)〉 = (u, u)E and is strictly positive.
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Appendix B

The DDF operators are constructed [2] according to the method formulated in [4] and are
defined in terms of bosonic and fermionic conformal fields:

Xµ(z) = √αxµ − i
1√
α
Pµ log(z) +

∑
m �=0

i

m
aµmz

−m Pµ(z) = X′µ(z)

ϕ(z) = −i� log(z) +
∑
m �=0

i

m
umz

−m I(z) = ϕ′(z)

(µ(z) =
∑
r∈Z+ ε

2

dµr z
−r (l(z) =

∑
r∈Z+ ε

2

tµr z
−r

with standard (anti)commutation rules [33]. The prime ′ denotes the action of the differential
operator −iz d

dz .
It is convenient to introduce the rescaled light-cone components of the fields:

X±(z) �→
(√

α

p+

)±1

X±(z) P±(z) �→
(√

α

p+

)±1

P±(z)

(±(z) �→
(√

α

p+

)±1

(±(z).

The transverse DDF operators are given by the formulae

Ai
m =

1

2π i

∮
dz

z
: (P i −m(i(+)e

imX+ :

Di
r =

1

2π i

∮
dz

z
:

(
(iP

1
2

+ − P i(+P
− 1

2
+ − i

2
(i(+(

′
+

)
eirX+ : .

The expressions for Liouville modes are a little more complicated:

Um = 1

2π i

∮
dz

z
: (I−m(l(+ + 2

√
β(P−1

+ (P ′+ +m(+(
′
+)))e

imX+ :

Tr = 1

2π i

∮
dz

z
:

(
(lP

1
2

+ −I(+P
− 1

2
+ − i

2
(l(+(

′
+ − 4

√
β((+P

−1
+ )′P

1
2

+

)
eirX+ :

while the formulae for longitudinal operators are

Ã−m =
1

2π i

∮
dz

z
:

(
P− −m(−(+ − i

2
P−1

+ (mP ′+ +m2(+(
′
+)

)
eimX+ :

G̃−r =
1

2π i

∮
dz

z
:

(
(−P

1
2

+ − P−(+P
− 1

2
+ − i

2
(−(+(

′
+ +

ε

16
(+P

− 3
2

+

)
eirX+ :

+
1

2π i

∮
dz

z
:

(
1

8
((+P

−1
+ )′P

− 3
2

+ P ′+ −
5

4
((+P

−1
+ )′P

1
2

+

− i

8
(+(

′
+(
′′
+P
− 7

2
+

)
eirX+ : .

Note that the various powers of P+ encode in fact the power series expansions around 1. Only
a finite number of terms survive under the integrals when the operators act on the states with
a finite number of components.

The longitudinal operators above neither (anti)commute with transverse modes nor with
Liouville ones. In order to introduce the diagonal basis one defines

A−m = Ã−m − LDDF
m + 1

2δm0 G−r = G̃−r −GDDF
r

whereLDDF
m andGDDF

r denote the operators given by the standard expressions (11) in transverse
and Liouville DDF modes with aε = (ε − 1) d−1

16 .
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